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Continuous Spectrum, Characteristic Modes,

and Leaky Waves of Open Waveguides
MaurQ Mongiardo and Tullio Rozzi, Fellow, IEEE

Abstract— The modes of open wavegoides with nonseparable
cross sections are derived by means of an extension of the

resonance equation for the electromagnetic field. Such modes,
forming a continuous spectrum, allow us to apply to discontinuity

problems in open environments the techniques originally

developed for closed waveguides.

In this paper, the resonance equation is generalized according

to functional analysis considerations. By this approach, it is

possible to derive the modal spectrum from the simultaneous

diagonalization of the real and imaginary parts of the admittance
of the structure. A variational interpretation of the solution of the

generalized resonance equation gives additional insight into the
modes of open waveguides.

The generalized resonance equation, when applied to three-
dimensional objects, provides the well-known characteristic
modes of these structures. The relationship between continuous
spectrum, characteristic modes, and leaky waves is also discussed.

I. INTRODUCTION

T HE modes of closed waveguides of separable cross

section (e.g., rectangular, cylindrical, etc.) are well known

from basic microwave courses [1]. These modes are real so-

lutions of the two-dimensional Helmholtz equation considered

in the plane transverse to the propagation direction; since the

waveguide is closed, the eigenvalues of the above equation

form a discrete set. A similar situation also occurs for three-

dimensional closed resonators. When the boundary surfaces

Qf the resonator are coordinate surfaces, the three-dimensional

Helmholtz equation can be solved in closed form, and again a

discrete spectrum of eigenvalues is present.

For closed waveguides, or resonators, of nonseparable ge-

ometry, the solution procedure of the Helmholtz equation

is still well known, even if it is more involved. In these

cases, in fact, modes can be obtained by a transverse reso-

nance procedure. As an example, let us examine the ridged

waveguide of Fig. 1. In this case, by using the symmetry,

we can consider just one-half of the structure. We choose as

unknowns the tangential components of the electric field E on

the separation surface X.. By considering suitable admittance

operators, the magnetic field is expressed in terms of the

tangential components of E. In each of the two regions,

that is, the regions below and above X., we have HI =

Y1 (E), Hz = Yz (E). After equating on X. the tangential

components of the magnetic fields, and by discretization, we
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Fig. 1. Example of a closed waveguide of nonseparable cross secticm,

obtain a matrix which depends on the transverse wavenumber

kt. The zeros of the determinant of this matrix can be obtained

for certain values of kt and they correspond to the resonamce

of the structure. Equivalently, we can find the eigenvalues

of the above matrix; for certain values of kt, an eigenvalue

is zero, then the determinant is zero, and the corresponding

eigenvector provides the modal field distribution. Following

this transverse resonance procedure, we can rigorously obtain

the modal spectrum of closed, nonseparable, structures.

For open waveguides, apart from a few discrete modes at

most, the spectrum becomes continuous (Fig. 2). For open

structures, when the coordinate surfaces coincide with the

boundaries, the modal spectrum is known. An excellent collec-

tion of solutions in the various reference systems is provided

by [2]. Let us take a simple one-dimensional example of a

dielectric slab waveguide. Its modal spectrum consists of a

finite number of discrete (surface wave) modes and a continu-

ous spectrum. The former are standing wave (in the direction

normal to the surface) solutions with discrete eigenvalues.

The continuous spectrum, on the other hand, has no discrete

eigenvalue; but once a particular wavenumber is chosen, the

field is a standing wave soluticm consisting of the incoming

wave and the outgoing wave in the direction normal to the

dielectric surface. This standing wave remains finite at infinity

and does not individually satisfy the radiation conditiom A

combination of these, however, represents radiation by any

physical source, thus satisfying the radiation condition. Hence,

such standing waves are “modes” of the structure.

Nevertheless, for open structures of nonseparable cross

section it was not well known for a long time how to proceed

in order to obtain the spectrum as for the case of separable

ones [3], [4]. Most open waveguides currently used, botlh in

microwaves and in optics, fall into the latter category (e.g.,

microstrips, slot lines, coplanar waveguides, inset waveguides,

dielectric waveguides, etc.). In some cases, it has been natural

to extend the transverse resonance technique also to c~pen
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Fig. 2. Complex k-~ plane. The branch cut on the real axis of k? is shown

together with a few discrete modes.

waveguides obtaining in this way the “leaky waves.” This

procedure, which is extraordinarily simple and elegant when

applicable, has lead to the understanding of scrme difficult

problems with modest computer resources [5]. In an open

environment, hQwever, the Helmholtz equation together with

its boundary condition is not self-adjoint. As a consequence,

the “leaky waves,” which grow at infinity, are not part of the

modal spectrum and are not suitable to a global representation

of the field on the guide cross section.

Recently, by properly extending the transverse resonance

technique, the spectrum of some open waveguides has been

obtained [6] – [10]. The importance of such a spectrum is

evident; in fact, discontinuities present along the waveguide

excite the whole spectrum, therefore generating radiation,

surface waves, mode conversion, etc. Moreover, the coupling

and the interference of waves incident from the exterior can

easily be accounted for if the spectrum is known.

Up to now, we have only considered open waveguides.

However, nonseparable three-dimensional objects also possess

modal fields. The knowledge of the latter greatly enhances

the solution of antenna and scattering problems. The study of

the above mQdes (also called characteristic modes), for three-

dimensional objects, has been initiated with the fundamental

wmk of Garbacz [11], [12]. In [13] and [14] the method of

moments has been applied in order to obtain a formulation

of the problem as well as an efficient numerical algorithm; in

[15] the technique has been suitably extended also to apertures

in metallic bodies. Successively, characteristic modes have

been successfully used for the synthesis and optimization of

antennas [16]– [19].

In this paper, we describe the derivation of the continuous

spectrum of nonseparable open waveguides. This method,
when applied to three-dimensional objects, gives the modal

characterization of the structure (characteristic modes) and

coincides with the approach developed in [11] – [19], when

applied to waveguides (Qpen or closed), it yields the spectrum

(both continuous or discrete). Therefore, it represents the

sought generalization of the transverse resonance approach to

open, nonseparable problems.

II. THIEORY OF THE CONTINUOUS SPECTRUM AND OF THE

CHARACTERISTIC MODES

As already mentioned in the introduction, for closed struc-

tures it is possible to obtain the discrete set of modes by

b

F-a+
Fig. 3. Slotted waveguide (as an example of an open waveguide of nonsep-
arable cross section). Y. is the surface along the slot, while Zm, which is
not reported, is the surface at infinity for > = cost.

searching the resonance of the structure. This approach can

also be rigorously extended to open structure. To be specific,

let us consider the case of a slotted waveguide as in Fig. 3.

In this case, the natural formulation of the problem is done in

terms of the equivalence theorem and of admittance operators.

With reference to Fig. 3, we define the following inner product

on E. as:

(B, C) = ~ B* Cdl
z.

(1)

where the * denotes complex conjugate; moreover, we define

an analogous inner product (B, C) ~ on the surface at infinity.

Since we are considering a uniform guiding structure, the z

dependence has been separated out, and the integrals along

X., Zm are simple line integrals.

Since the structure is open, radiation phenomena of the elec-

tromagnetic energy are, in general, present. Due to radiation,

the admittance operator involved is complex. In the following,

in order to avoid unnecessary analytical burden, we refer to

the scalar TE or TM cases, even though the hybrid case is

immediately describable by using dyadics. If we try to account

for radiation by using a complex kz, we also get complex

values of kt in the 2-D Helmholtz equatim

(2a)

where k: = W2fLE; ,& = k: + k: = k? – k;, and T represents

the generic field (or potential). On the other hand, it is possible

to observe that the continuous spectrum Correspcrnds, in the

complex plane (Fig. 2), to a branch cut from the origin to
infinity. This branch cut can only be made along the real axis

if we want fields finite at infinity. But a branch cut along

the real axis corresponds to a real value of kz, i.e., absence

of attenuation in the propagation direction. This absence

of attenuation can only be realized if the outgoing waves

(radiation from the structure to infinity) are compensated

by incoming waves (energy coming from infinity to the

structure). This arrangement corresponds to standing waves

for the radiative part (k~ < ko) of the field. Such an approach

has been successfully employed in [6] –[10] to determine the

continuous spectrum of Qpen waveguides. In [6] – [10], the

characteristics of the standing waves have been described in
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terms of the phase shift which a plane wave undergoes when

it is reflected from, say, the slotted plane (Fig. 3). Then, by

equating the tangential components of the magnetic fields

on E., a generalized eigenvalue equation is obtained. The

solution of the generalized eigenvalue equation allows the

calculation of the continuous spectrum.

It is possible to arrive at the same conclusions in a very

direct way, by considering (2a) from the viewpoint of func-

tional analysis, while considering k~ real (O < kt < m).

Referring to (2a), the boundary condition corresponding to the

Sommerfeld radiation condition (waves propagating toward

infinity) is given by

au
~–jktv=o (2b)

where v denotes the outgoing part of -r. While (2a) is self-

adjoint, condition (2b) it is not self-adjoint in the Hermitian

sense; in fact, the adjoint boundary condition is

$+jktu=o (2C)

where u denotes the part of r which corresponds to a wave

coming from infinity toward the guide. Therefore, if we

want to use of the eigenfunction expansion method for our

diffraction problem, we have to complement our problem

with the adjoint problem, which requires waves coming from

infinity instead of waves going to infinity [20, pp. 299–300].

Let us call the waves coming from infinity a, and the waves

reflected by our scatterer b. In terms of a scattering operator

S we have

b=Sa

where, obviously, the operator S is unitary but not self-

adjoint. Therefore, we have to introduce the following shifted

eigenvalue problem [20]:

sun = Onvn

S+vn = Onun

where S+ is the adjoint of S and u~, v~ are the eigenfunctions,

while am are the singular values. Note that Un are a basis

appropriate to represent the incoming waves (the a); and Vm

are a basis appropriate to represent the outgoing waves (the

b). Analogous considerations hold for a three-dimensional

scatterer if we expand the fields in terms of multiples

correspondent to spherical waves incident (e~k” ) and reflected

(e-~kT).

As already stated, when apertures on a metallic screen are

present, the natural representation of diffraction problems is

in terms of admittance operators. For example, with reference

to Fig. 3, we can enforce the continuity of the tangential

components of the electric field by considering appropriate

magnetic currents. Accordingly, our problem has been divided
into two parts-a region corresponding to the waveguide, and

a region corresponding to the air half-space. We can express

the magnetic field inside each region in terms of the magnetic

currents, and then we can equate the tangential components of

the magnetic field on the aperture 2.. The equation obtained

in this way contains an admittance operator Y and the sum of

the two operators corresponding to the two regions, which is

not self-adjoint. Let us separate its real and imaginary parts

Y= G+jB (3)

where G, B are symmetrical, real, and self-adjoint; they can

be obtained by Y and by its complex conjugate Y*, as

G = (Y+ Y*)/2 B = (Y –Y*)/2j. (4)

When sources are present, the general radiation/scattering

problem can be described in terms of the operator Y as

Y(#)) = w

where # represents the field on X. and T is a generic

excitation. Note that Y depends on the geometry of the

problem, dielectric constants, and on kt. Note also that, since

G, B are self-adjoint, they admit a spectral decomposition of

the following type:

G(~ = ~k<k B<k = .!&k

where ~k, Vk are the eigenvalues (Teak and pOSitiVe~) and

&k, &k are the eigeIIfU@iOnS Naturally, the inner product
(&k, G&k) corresponds to the radiated energy, while (<k, Bck)

corresponds to the reactive energy. The two operators, being

real symmetric and G being positive definite, can be diago-

nalized simultaneously by a common basis of eigenfunctions.

By denoting with #n both & and &, we can write

G& = p.q$. Bq$. = u.~n

by substituting, we obtain

x.G$. = Bq& (5)

where Xm = v~ /p~. Equation (5) is the generalized transverse

resonance condition for open structures (nonself-adjoint prob-

lems). From (5), for each k~ value, it is possible to obtain

a discrete number of eigenfunctions +~ (n = 1,2, . ..) which

represent the modes of our structure. Observe that in (5)

only the ratio between Vn and ~n is used. The possibility of

normalizing differently the quantity (@n, G@n) corresponds,

for the three-dimensional case, to the different choices adopted

in [16]– [19]. In the following, the choice (#n, G#n) = 1 has

been adopted. Since G, B are real, symmetrical, operators all

the eigenvalues Xm are real, and all the eigenfunctions q$~

can be chosen to be real. The eigenfunctions, when suitably

normalized, satisfy the following orthogonality relationship:

(#m, G(q5n)) = ti~n (6a)

(@m, B(&)) = Xnfkn (6b)

(@m,Y(q5.)) = Anf5mn (6c)

where ~mn is ~OneCker delta ( ~mn = o! m # n; ~mn =

l,m = n) and & = 1 + jxm. By using the generalized

Green’s theorem [21, pp., 870–874], it is also possible to show

that

(q$m, G(q5.))@ = /im. . (6d)
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Therefore, the eigenfunctions simultaneously diagonalize the

operators G, l?, Y. It is also noted that the solution of (5)

minimizes the following Rayleigh ratio:

(7)

This functional corresponds to the ratio between the stored

reactive energy and the radiated energy. Accordingly, the

eigenfunctions are the field distribution which minimizes the

ratio between the reactive and radiative energy. In terms of the

quality factor Q, this corresponds to saying that Q is minimum;

or, in terms of Lagrangians, minimization of (7) gives a

minimum of the Lagrangian of the system. Therefore, for open

waveguides, to each kt value corresponds a multiplicity of

eigenvalues and eigenfunctions; each eigenfunction describes

a different field distribution on the discontinuous interface and

generates a field which is the solution of (2a); these fields are

the modal fields. The modal solutions, denoted as rn (r; kt ) in

the following, are easily calculated from the eigenfunctions. At

a given frequency, part of the spectrum is radiating (kt < k),

while the remaining part contributes only to the reactive

energy (kt > k). Moreover, it is possible to show that modes

correspondent to different kt are orthogonal; that is, in the

section S, comprising the guide and the half-space, we have

JTn(r;kt)~m(r’;k:) M = dim($(kt – k;) . (8)
s

However, the modes are also complete, since

J% Tn(r;kt)~n(r’;/ct)dkt = 6(T – r’) . (9)
on

The completeness follows from the fact that the operators G, B

are self-adjoint and G is positive definite [21, pp. 774–778].

Actually, G is only positive semidefinite, but when it becomes

zero, no radiation is present and the classical formulation used

for closed structures can be used.

Relationships (6), (8), and (9) allow modal expansion of

a given field on a section z = cost in a manner similar

to that employed in closed waveguides. They represent the

starting point to treat discontinuity problems in open structure

by modal analysis.

A. Characteristic Modes for Three-Dimensional Objects

The above modal theory is, however, also applicable to
three-dimensional objects. Actually, it has been introduced in

[11] for studying scattering phenomena. The clear exposition
of the theory in the framework of functional analysis, as well

as its method of moment discretization, has been developed

in [13] – [15]. What has not been noticed in these papers

is the possibility of obtaining the continuous spectrum of

open waveguides. Equivalently, if the theory of characteristic

modes is applied to a two-dimensional problem for all values

of real ?it(O < kt < m), the complete modal spectrum is

obtained. To conclude, the spectrum of two-dimensional or

three-dimensional structure can be obtained from a resonance

equation. In closed environments, the zeros of the eigenvalues

correspond to the natural frequencies of the structure. In open

environments, (5) becomes the resonance equation, and for

each value of kt (for 2-D problems) or k (for 3-D problems)

we have a set of eigenvalues (characteristic values) and

eigenvectors (characteristic vectors) which provide the modal

characterization of the structure.

B. “Leaky Waves”

In the case of “leaky waves”, the procedure consists of

determining a kt value such as

Y& = Anq$n; An=l+jx. =o. (lo)

However, this cannot happen for real values of lit since, for

real kt, Xn is also real. Therefore, one is forced to consider

complex values of kt corresponding to waves growing toward

infinity (nonmodal solutions). It should also be observed that,

while the transverse resonance for closed waveguides is a

rigorous procedure, when it is applied as in the leaky wave

formalism it becomes only an approximation. As stated in [5],

this approximation holds if the following are true.

1) The geometry of the antenna is capable of supporting a

wave of complex type. This is equivalent to saying that at least

a solution of (10) exists.

The jield contribution due to a complex eigenvalue is pre-

dominant in the near field. This condition corresponds to

saying that the near field is representable principally in terms

of the leaky wave. It should be noted that, rigorously speaking,

the field has to be expanded in terms of the continuous

spectrum as

/“x An(kt)rn(r; kt) dkt
on

where An (Kt ) is the modal amplitude. However, this integral

can be deformed in the complex kt plane. When the con-

tribution to the above integral is principally due to the pole

corresponding to the leaky waves, then condition 2 holds and

the leaky wave formalism become a useful approximation.

III. COMPUTATION OF THE CONTINUOUS SPECTRUM

Having recognized the relationship between a continuous

spectrum and the characteristic modes, all the results devel-

oped for the latter can be almost immediately employed to

determine the spectrum of open waveguides and vice versa.

As an example, in [22] and [23], the case of a slotted screen

(Fig. 4) has been studied in terms of the characteristic modes.
On the other hand, in [6], the case of the slotted guide of

Fig. 3 has been studied according to the modal developed in

[6]-[10]. With minor modification, it is possible to apply the
theory developed in [6] in order to study the problem of Fig. 4.

We will now compare the results.

The knowledge of the continuous spectrum is correspondent

to the knowledge, for each kt, of the eigenvectors of (5). In

this case (Fig. 4), these eigenvalues depend on the geometry

but not on the frequency. A rigorous Galerkin procedure has

been applied to solve (5) for both the TE and TM case. An

example of the convergence of the eigenvalues with respect

to the number of basis functio~s is given in Table I for the



MONGL4RD0 AND ROZZI CONTINUOUS SPECTRUM, CHARACTERISTIC MODES, AND LEAKY WAVES 1333

TABLE I
CONVERGENCEOF THE EIGENVAUJES OF (5) FORTHE TE CASE, THE ELECTRIC FIELD ON THE APERTURE (CF. FIG, 4) HAS BEEN

EXPANDED IN TERMS OF CHE.BYSHEVPOLYNOMIALS AND N REFERSTO THE NUMBER OF BASIS FUNCTIONS USED

N xl X2 X3 X4 X5 X6

1

2
3

4
5
6
-1
8

9

10

0.4453
0.4413
0.0252
0.0252
0.0210
0.0211
0.0211
0.0211
0.0209
0.0209

0.4453
0.4113

0.3033
0.3033
0.3023
0.3023
0.3023

0.3023

0.3022

1.481

1.481 9.58
1.457 9.58 162.57
1.457 9.51 162.57 5137.82
1.457 9.51 161.74 5137.82

1.457 9.51 161.74 5120.99

1.457 9.51 161.62 5120.99

1.457 9.51 161.62 5115.81

TABLE II
CONVERGENCEOF THE EIGBNVALUESOF (5) FORTHE TM CASE THE DRIVATIVE OF THE ELECTRIC FIELD ON THE AFERTURE, 8EZ /8y,

HAS BEEN EXPANDED IN TERMS OF CHEBYSHEV POLYNOMIALS. N REFERSTO THE NUMBER OF BASIS FUNCTIONS USED.

N xl x2 x3 X4 X5 X6

1
2

3
4

5

6

7
8

9

–.0597
–.0597

–.0229

-.0229

-.0220

-.0220

-.0219

-.0219
–.0219

–.6092

-.6092 -8.1384
–.5096 -8.1384 -159.8632

-.5096 -7.8127 -159.8632 -5063.6068

-.5070 –7.8127 –157.4882 -5063.6068 –243298.4952

-.5070 –7.7943 -157.4882 -5030.5213 –243298.4952

-.5065 -7.7943 -157.1237 -5030.5213 –242626,5292

-.5065 -7.7839 –157.1237 -5016.7864 –242626.5292

ze
o

Fig. 4. Geometry of a conducting plane with an infinity long slot of width-2d.

TE case, and in Table II for the TM case. Both cases have

been computed for kt . 2d = x (see Fig. 4) and can be

compared to the results of [22] and [23]. The comparison

shows that, by employing Chebyshev polynomials, very few

terms are necessary to achieve a good convergence. Moreover,

by increasing the number of terms, the results practically do

not change. In Table I, a slight disagreement with the first

column of [22, Table I] is noted; this is probably due to the

fact that in [22] convergence has not yet been achieved.

In [22] and [23], very useful approximations for the Xn

have been found. These approximations have been checked

against the rigorous results and are reported in Fig. 5 for the

TE case, and in Fig. 6 for the TM case. In [6]–[10], (5) has

generally been solved in terms of the phase shift an (kt) that

a plane wave undergoes when it is reflected from the slotted

screen. The relationship between an (kt) and Xn is simply

given by –cotmn (kt) = Xn. It is interesting to note that the

oscillations in Fig. 5 are similar to a Fresnel phenomenon (field

perpendicular to the edge). It should also be noted that better

results are obtained for the approximation relative to the TE

case.

Fig. 5 and 6 provide all the information necessary to eval-

uate the spectrum of the slotted conducting plane. They also

describe the electrical behavior of the slotted conducting plane.

The phase shift an (kt) = 90° corresponds to sin an (kt) = 1

and is obtained for wide slots in the TE case. Here, the X~’s

are positive since the energy stored near the slot is essentially

capacitive. When increasing kt . 2d, sin an (kt) tends to unity,

and therefore Xn tends to zero. The phase shift G (kt) = 270°

corresponds to sin an (kt ) = – 1 and is obtained for wide slots

in the TM case. Here, Xn’s are negative since the energy stored

near the slot is essentially inductive.

It is also noted that the first eigenvalue for the TE case is

different from zero when kt is zero. It is therefore possible to

find a mode having a zero value of Ict and, as such, propagating

just in the z direction. This is the TEM mode of the structure.

IV. CONCLUSIONS

By means of simple considerations of functional analysis,

we directly derive a generalization of the resonance equation.

This equation allows computation of the continuous spectrum

of open waveguides of nonseparable cross section. In the case
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Fig. 5. Behavior of the first three eigenvalues of a slotted screen for the
TE case (the slot width is slot = 2d). The continuous curves refer to the
rigorous results obtained by considering six Chebyshev basis functions, while
the approximate results (dashed lines) are taken from [22].

of three-dimensional objects it corresponds to the already-

known characteristic modes.

The generalized resonance equation has been obtained from

the simultaneous diagonalization of the reactance and of

the radiation conductance by means of a set of common

fields. These fields minimize the Lagrangian (admittance) of

the system and the ratio between the reactive and radiative

energies)

Once the complete modal spectrum is known, modal anal-

ysis of open waveguide discontinuities becomes feasible.

o
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5“
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c.% 4 \-0.6 “., tint eigenvafue (TM)
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Fig. 6. Behavior of the first three eigenvalues of a slotted screen for the
TM case (the slot width is slot = 2d). The continuous curves refer to the
rigorous results obtained by considering six Chebyshev basis functions, while

the approximate results [dashed lines) are taken from [23].
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