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Characteristic Modes,

and Leaky Waves of Open Waveguides

Mauro Mongiardo and Tullio Rozzi, Fellow, IEEE

Abstract— The modes of open waveguides with nonseparable
cross sections are derived by means of an extension of the
resonance equation for the electromagnetic field. Such modes,
forming a continuous spectrum, allow us to apply to discontinuity
problems in open environments the techniques originally
developed for closed waveguides.

In this paper, the resonance equation is generalized according
to functional analysis considerations. By this approach, it is
possible to derive the modal spectrum from the simultaneous
diagonalization of the real and imaginary parts of the admittance
of the structure. A variational interpretation of the solution of the
generalized resonance equation gives additional insight into the
modes of open waveguides.

The generalized resonance equation, when applied to three-
dimensional objects, provides the well-known characteristic
modes of these structures. The relationship between continuous
spectrum, characteristic modes, and leaky waves is also discussed.

I. INTRODUCTION

HE modes of closed waveguides of separable cross

section (e.g., rectangular, cylindrical, etc.) are well known
from basic microwave courses [1]. These modes are real so-
lutions of the two-dimensional Helmholtz equation considered
in the plane transverse to the propagation direction; since the
waveguide is closed, the eigenvalues of the above equation
form a discrete set. A similar situation also occurs for three-
dimensional closed resonators. When the boundary surfaces
of the resonator are coordinate surfaces, the three-dimensional
Helmboltz equation can be solved in closed form, and again a
discrete spectrum of eigenvalues is present.

For closed waveguides, or resonators, of nonseparable ge-
ometry, the solution procedure of the Helmholtz equation
is still well known, even if it is more involved. In these
cases, in fact, modes can be obtained by a transverse reso-
nance procedure. As an example, let us examine the ridged
waveguide of Fig. 1. In this case, by using the symmetry,
we can consider just one-half of the structure. We choose as
unknowns the tangential components of the electric field £ on
the separation surface X,. By considering suitable admittance
operators, the magnetic field is expressed in terms of the
tangential components of E. In each of the two regions,
that is, the regions below and above X,, we have Hy =
Yi(E),Hy = Y2(E). After equating on X, the tangential
components of the magnetic fields, and by discretization, we
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Fig. 1. Example of a closed waveguide of nonseparable cross section.

obtain a matrix which depends on the transverse wavenumber
k;. The zeros of the determinant of this matrix can be obtained
for certain values of k; and they correspond to the resonance
of the structure. Equivalently, we can find the eigenvalues
of the above matrix; for certain values of k:, an eigenvalue
is zero, then the determinant is zero, and the corresponding
eigenvector provides the modal field distribution. Following
this transverse resonance procedure, we can rigorously obtain
the modal spectrum of closed, nonseparable, structures.

For open waveguides, apart from a few discrete modes at
most, the spectrum becomes continuous (Fig. 2). For open
structures, when the coordinate surfaces coincide with the
boundaries, the modal spectrum is known. An excellent collec-
tion of solutions in the various reference systems is provided
by [2]. Let us take a simple one-dimensional example of a
dielectric slab waveguide. Its modal spectrum consists of a
finite number of discrete (surface wave) modes and a continu-
ous spectrum. The former are standing wave (in the direction
normal to the surface) solutions with discrete eigenvalues.
The continuous spectrum, on the other hand, has no discrete
eigenvalue; but once a particular wavenumber is chosen, the
field is a standing wave solution consisting of the incoming
wave and the outgoing wave in the direction normal to the
dielectric surface. This standing wave remains finite at infinity
and does not individually satisfy the radiation condition. A
combination of these, however, represents radiation by any
physical source, thus satisfying the radiation condition. Hence,
such standing waves are “modes” of the structure.

Nevertheless, for open structures of nonseparable cross
section it was not well known for a long time how to proceed
in order to obtain the spectrum as for the case of separable
ones [3], [4]. Most open waveguides currently used, both in
microwaves and in optics, fall into the latter category (e.g.,
microstrips, slot lines, coplanar waveguides, inset waveguides,
dielectric waveguides, etc.). In some cases, it has been natural
to extend the transverse resonance technique also to open
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Fig. 2. Complex k7 plane. The branch cut on the real axis of k? is shown
together with a few discrete modes.

waveguides obtaining in this way the “leaky waves.” This
procedure, which is extraordinarily simple and elegant when
applicable, has lead to the understanding of some difficult
problems with modest computer resources [S5]. In an open
environment, however, the Helmholtz equation together with
its boundary condition is not self-adjoint. As a consequence,
the “leaky waves,” which grow at infinity, are not part of the
modal spectrum and are not suitable to a global representation
of the field on the guide cross section.

Recently, by properly extending the transverse resonance
technique, the spectrum of some open waveguides has been
obtained [6]—[10]. The importance of such a spectrum is
evident; in fact, discontinuities present along the waveguide
excite the whole spectrum, therefore generating radiation,
surface waves, mode conversion, etc. Moreover, the coupling
and the interference of waves incident from the exterior can
easily be accounted for if the spectrum is known.

Up to now, we have only considered open waveguides.
However, nonseparable three-dimensional objects also possess
modal fields. The knowledge of the latter greatly enhances
the solution of antenna and scattering problems. The study of
the above modes (also called characteristic modes), for three-
dimensional objects, has been initiated with the fundamental
work of Garbacz [11], [12]. In [13] and [14] the method of
moments has been applied in order to obtain a formulation
of the problem as well as an efficient numerical algorithm; in
[15] the technique has been suitably extended also to apertures
in metallic bodies. Successively, characteristic modes have
been successfully used for the synthesis and optimization of
antennas [16]-[19].

In this paper, we describe the derivation of the continuous
spectrum of nonseparable open waveguides. This method,
when applied to three-dimensional objects, gives the modal
characterization of the structure (characteristic modes) and
coincides with the approach developed in [11]-[19], when
applied to waveguides (open or closed), it yields the spectrum
(both continuous or discrete). Therefore, it represents the
sought generalization of the transverse resonance approach to
open, noaseparable problems.

II. THEORY OF THE CONTINUOUS SPECTRUM AND OF THE
CHARACTERISTIC MODES

As already mentioned in the introduction, for closed struc-
tures it is possible to obtain the discrete set of modes by
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Fig. 3. Slotted waveguide (as an example of an open waveguide of nonsep-

arable cross section). &, is the surface along the slot, while o, which is
not reported, is the surface at infinity for z = cost.

searching the resonance of the structure. This approach can
also be rigorously extended to open structure. To be specific,
let us consider the case of a slotted waveguide as in Fig. 3.
In this case, the natural formulation of the problem is done in
terms of the equivalence theorem and of admittance operators.
With reference to Fig. 3, we define the following inner product
on X, as:

(B, C) :/E B*Cdl 1)

where the * denotes complex conjugate; moreover, we define
an analogous inner product (B, C')__ on the surface at infinity.
Since we are considering a uniform guiding structure, the z
dependence has been separated out, and the integrals along
Y4, Yoo are simple line integrals.

Since the structure is open, radiation phenomena of the elec-
tromagnetic energy are, in general, present. Due to radiation,
the admittance operator involved is complex. In the following,
in order to avoid unnecessary analytical burden, we refer to
the scalar TE or TM cases, even though the hybrid case is
immediately describable by using dyadics. If we try to account
for radiation by using a complex k., we also get complex
values of k; in the 2-D Helmholtz equation

Vir+ k=0 (2a)

where k2 = w?pue; kf = k2 + k2 = k2 — k2, and 7 represents
the generic field (or potential). On the other hand, it is possible
to observe that the continuous spectrum corresponds, in the
complex plane (Fig. 2), to a branch cut from the origin to
infinity. This branch cut can only be made along the real axis
if we want fields finite at infinity. But a branch cut along
the real axis corresponds to a real value of k, i.e., absence
of attentuation in the propagation direction. This absence
of attentuation can only be realized if the outgoing waves
(radiation from the structure to infinity) are compensated
by incoming waves (energy coming from infinity to the
structure). This arrangement corresponds to standing waves
for the radiative part (k: < ko) of the field. Such an approach
has been successfully employed in [6]—[10] to determine the
continuous spectrum of open waveguides. In [6]—[10], the
characteristics of the standing waves have been described in
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terms of the phase shift which a plane wave undergoes when
it is reflected from, say, the slotted plane (Fig. 3). Then, by
equating the tangential components of the magnetic fields
on ¥,, a generalized eigenvalue equation is obtained. The
solution of the generalized eigenvalue equation allows the
calculation of the continuous spectrum.

It is possible to arrive at the same conclusions in a very
direct way, by considering (2a) from the viewpoint of func-
tional analysis, while considering k; real (0 < k: < o0).
Referring to (2a), the boundary condition corresponding to the
Sommerfeld radiation condition (waves propagating toward
infinity) is given by

ov
or
where v denotes the outgoing part of 7. While (2a) is self-

adjoint, condition (2b) it is not self-adjoint in the Hermitian
sense; in fact, the adjoint boundary condition is

—jkiv =20 (2b)

ou
'5; (2C)
where v denotes the part of 7 which corresponds to a wave
coming from infinity toward the guide. Therefore, if we
want to use of the eigenfunction expansion method for our
diffraction problem, we have to complement our problem
with the adjoint problem, which requires waves coming from
infinity instead of waves going fo infinity [20, pp. 299-300].
Let us call the waves coming from infinity a, and the waves
reflected by our scatterer b. In terms of a scattering operator
S we have

b= Sa

where, obviously, the operator S is unitary but not self-
adjoint. Therefore, we have to introduce the following shifted
eigenvalue problem [20]:

St, = 0pVn

Stu, = oty

where ST is the adjoint of S and u,,, v, are the eigenfunctions,
while ¢, are the singular values. Note that u,, are a basis
appropriate to represent the incoming waves (the a); and v,
are a basis appropriate to represent the outgoing waves (the
b). Analogous considerations hold for a three-dimensional
scatterer if we expand the fields in terms of multipoles
correspondent to spherical waves incident (e7*") and reflected
(e77%7).

As already stated, when apertures on a metallic screen are
present, the natural representation of diffraction problems is
in terms of admittance operators. For example, with reference
to Fig. 3, we can enforce the continuity of the tangential
components of the electric field by considering appropriate
magnetic currents. Accordingly, our problem has been divided
into two parts-—a region corresponding to the waveguide, and
a region corresponding to the air half-space. We can express
the magnetic field inside each region in terms of the magnetic
currents, and then we can equate the tangential components of
the magnetic field on the aperture X,. The equation obtained
in this way contains an admittance operator Y and the sum of
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the two operators corresponding to the two regions, which is
not self-adjoint. Let us separate its real and imaginary parts

Y =G+jB 3)

where G, B are symmetrical, real, and self-adjoint; they can
be obtained by Y and by its complex conjugate Y*, as

G=( +Y*)/2 B=(Y-Y*)/2. @)

When sources are present, the general radiation/scattering
problem can be described in terms of the operator Y as

Y(9) =¥

where ¢ represents the field on ¥, and ¥ is a generic
excitation. Note that Y depends on the geometry of the
problem, dielectric constants, and on k;. Note also that, since
G, B are self-adjoint, they admit a spectral decomposition of
the following type:

G& = préx

where pr, vy, are the eigenvalues (reals and positives) and
&k, &, are the eigenfunctions. Naturally, the inner product
(éx, G&) corresponds to the radiated energy, while ((x, B(k)
corresponds to the reactive energy. The two operators, being
real symmetric and G being positive definite, can be diago-
nalized simultaneously by a common basis of eigenfunctions.
By denoting with ¢,, both &, and (,, we can write

G¢n - Mn¢n B¢n = Vn¢n

Br = vy

by substituting, we obtain

XnGén = Bon ®)
where X, = Vpn/ttn- Equation (5) is the generalized transverse
resonance condition for open structures (nonself-adjoint prob-
lems). From (5), for each k; value, it is possible to obtain
a discrete number of eigenfunctions ¢, (n = 1,2,---) which
represent the modes of our structure. Observe that in (5)
only the ratio between v, and p,, is used. The possibility of
normalizing differently the quantity (¢,,G¢,) corresponds,
for the three-dimensional case, to the different choices adopted
in [16]—[19]. In the following, the choice (¢n,G¢,) = 1 has
been adopted. Since G, B are real, symmetrical, operators all
the eigenvalues x, are real, and all the eigenfunctions ¢,
can be chosen to be real. The eigenfunctions, when suitably
normalized, satisfy the following orthogonality relationship:

<¢ma G(¢n)> = bmn (6a)
{$m, B(¢n)) = Xnbmn (6b)

where 8, is Kronecker delta (8 = O,m # njmn =
1,m = n) and A, = 1+ jx». By using the generalized
Green’s theorem [21, pp., 870—874], it is also possible to show
that
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Therefore, the eigenfunctions simultaneously diagonalize the
operators G, B,Y. It is also noted that the solution of (5)
minimizes the following Rayleigh ratio:

(6,B(9))
= 6.ao) @

This functional corresponds to the ratio between the stored
reactive energy and the radiated energy. Accordingly, the
eigenfunctions are the field distribution which minimizes the
ratio between the reactive and radiative energy. In terms of the
quality factor ¢}, this corresponds to saying that ¢ is minimum;
or, in terms of Lagrangjans, minimization of (7) gives a
minimum of the Lagrangian of the system. Therefore, for open
waveguides, to each k; value corresponds a multiplicity of
eigenvalues and eigenfunctions; each eigenfunction describes
a different field distribution on the discontinuous interface and
generates a field which is the solution of (2a); these fields are
the modal fields. The modal solutions, denoted as 7, (r; k) in
the following, are easily calculated from the eigenfunctions. At
a given frequency, part of the spectrum is radiating (k; < k),
while the remaining part contributes only to the reactive
energy (k; > k). Moreover, it is possible to show that modes
correspondent to different k. are orthogonal; that is, in the
section S, comprising the guide and the half-space, we have

f T (s ke (73 K2) S = SumB(ke — K) . (®)
S

However, the modes are also complete, since

/oo an(r; k) a(r's k) dke = 8(r — 7). (©)
0 7

The completeness follows from the fact that the operators G, B
are self-adjoint and G is positive definite [21, pp. 774-778].
Actually, G is only positive semidefinite, but when it becomes
zero, no radiation is present and the classical formulation used
for closed structures can be used.

Relationships (6), (8), and (9) allow modal expansion of
a given field on a section z = cost in a manner similar
to that employed in closed waveguides. They represent the
starting point to treat discontinuity problems in open structure
by modal analysis.

A. Characteristic Modes for Three-Dimensional Objects

The above modal theory is, however, also applicable to
three-dimensional objects. Actually, it has been introduced in
[11] for studying scattering phenomena. The clear exposition
of the theory in the framework of functional analysis, as well
as its method of moment discretization, has been developed
in [13]-[15]. What has not been noticed in these papers
is the possibility of obtaining the continuous spectrum of
open waveguides. Equivalently, if the theory of characteristic
modes is applied to a two-dimensional problem for all values
of real k(0 < k; < 00), the complete modal spectrum is
obtained. To conclude, the spectrum of two-dimensional or
three-dimensional structure can be obtained from a resonance
equation. In closed environments, the zeros of the eigenvalues
correspond to the natural frequencies of the structure. In open
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environments, (5) becomes the resonance equation, and for
each value of k; (for 2-D problems) or k (for 3-D problems)
we have a set of eigenvalues (characteristic values) and
eigenvectors (characteristic vectors) which provide the modal
characterization of the structure.

B. “Leaky Waves”

In the case of “leaky waves”, the procedure consists of
determining a k; value such as

Y(;bn - Anqsna

However, this cannot happen for real values of k; since, for
real k;, x, is also real. Therefore, one is forced to consider
complex values of k; corresponding to waves growing toward
infinity (nonmodal solutions). It should also be observed that,
while the transverse resonance for closed waveguides is a
rigorous procedure, when it is applied as in the leaky wave
formalism it becomes only an approximation. As stated in [5],
this approximation holds if the following are true.

1) The geometry of the antenna is capable of supporting a
wave of complex type. This is equivalent to saying that at least
a solution of (10) exists.

The field contribution due 1o a complex eigenvalue is pre-
dominant in the near field. This condition corresponds to
saying that the near field is representable principally in terms
of the leaky wave. It should be noted that, rigorously speaking,
the field has to be expanded in terms of the continuous
spectrum as

An=14+jxn=0. (10)

/Ooo > An(ke)ra(rs k) dky

where A, (K}) is the modal amplitude. However, this integral
can be deformed in the complex k; plane. When the con-
tribution to the above integral is principally due to the pole
corresponding to the leaky waves, then condition 2 holds and
the leaky wave formalism become a useful approximation.

ITI. COMPUTATION OF THE CONTINUOUS SPECTRUM

Having recognized the relationship between a continuous
spectrum and the characteristic modes, all the results devel-
oped for the latter can be almost immediately employed to
determine the spectrum of open waveguides and vice versa.
As an example, in [22] and [23], the case of a slotted screen
(Fig. 4) has been studied in terms of the characteristic modes.
On the other hand, in [6], the case of the slotted guide of
Fig. 3 has been studied according to the modal developed in
[6]~[10]. With minor modification, it is possible to apply the
theory developed in [6] in order to study the problem of Fig. 4.
We will now compare the results.

The knowledge of the continuous spectrum is correspondent
to the knowledge, for each k., of the eigenvectors of (5). In
this case (Fig. 4), these eigenvalues depend on the geometry
but not on the frequency. A rigorous Galerkin procedure has
been applied to solve (5) for both the TE and TM case. An
example of the convergence of the eigenvalues with respect
to the number of basis functions is given in Table I for the
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TABLE I
CONVERGENCE OF THE EIGENVALUES OF (5) FOR THE TE CasE. THE ELECTRIC FIELD ON THE APERTURE (CF. FiG. 4) HAS BEEN
EXPANDED IN TERMS OF CHEBYSHEV POLYNOMIALS AND N REFERS TO THE NUMBER OF Basis FuNcTions USED

N X1 X2 X4 X5 X6
1 0.4453
2 0.4413 0.4453
3 0.0252 0.4113 1.481
4 0.0252 0.3033 1.481 9.58
5 0.0210 0.3033 1.457 9.58 162.57
6 0.0211 0.3023 1.457 9.51 162.57 5137.82
7 0.0211 0.3023 1.457 9.51 161.74 5137.82
8 0.0211 0.3023 1.457 9.51 161.74 5120.99
9 0.0209 0.3023 1.457 9.51 161.62 5120.99
10 0.0209 0.3022 1.457 9.51 161.62 5115.81
TABLE II

CONVERGENCE OF THE EIGENVALUES OF (5) FOR THE TM CASE THE DRIVATIVE OF THE ELECTRIC FIELD ON THE APERTURE, O E. /Dy,
HAS BEEN EXPANDED IN TERMS OF CHEBYSHEV POLYNOMIALS. N REFERS TO THE NUMBER OF Basis FUNCTIONS USED.

N X1 X2 X4 X5 X6
1 —.0597
2 -.0597 —.6092
3 -.0229 -.6092 -8.1384
4 -.0229 -.5096 -8.1384 -159.8632
5 -.0220 -.5096 -7.8127 -159.8632 -5063.6068
6 -.0220 -.5070 —7.8127 -157.4882 —5063.6068 —243298.4952
7 -.0219 -.5070 -7.7943 -157.4882 -5030.5213 —243298.4952
8 -.0219 -.5065 —7.7943 -157.1237 -5030.5213 —242626.5292
9 ~.0219 ~.5065 -7.7839 ~-157.1237 -5016.7864 ~242626.5292

g2d

]
Fig. 4. Geometry of a conducting plane with an infinity long slot of width-2d.

TE case, and in Table II for the TM case. Both cases have
been computed for k; - 2d = = (see Fig. 4) and can be
compared to the results of [22] and [23]. The comparison
shows that, by employing Chebyshev polynomials, very few
terms are necessary to achieve a good convergence. Moreover,
by increasing the number of terms, the results practically do
not change. In Table I, a slight disagreement with the first
column of [22, Table I] is noted; this is probably due to the
fact that in [22] convergence has not yet been achieved.

In [22] and [23], very useful approximations for the x,
have been found. These approximations have been checked
against the rigorous results and are reported in Fig. 5 for the
TE case, and in Fig. 6 for the TM case. In [6]-[10], (5) has

generally been solved in terms of the phase shift o, (k) that
a plane wave undergoes when it is reflected from the slotted
screen. The relationship between a,(k:) and X, is simply
given by —cotay,(k:) = xn. It is interesting to note that the
oscillations in Fig. 5 are similar to a Fresnel phenomenon (field
perpendicular to the edge). It should also be noted that better
results are obtained for the approximation relative to the TE
case.

Fig. 5 and 6 provide all the information necessary to eval-
uate the spectrum of the slotted conducting plane. They also
describe the electrical behavior of the slotted conducting plane.
The phase shift a,,(k:) = 90° corresponds to sinay, (k) = 1
and is obtained for wide slots in the TE case. Here, the x,’s
are positive since the energy stored near the slot is essentially
capacitive. When increasing k; - 2d, sin o, (k) tends to unity,
and therefore x,, tends to zero. The phase shift a, (k) = 270°
corresponds to sin o, (k) = —1 and is obtained for wide slots
in the TM case. Here, x»,’s are negative since the energy stored
near the slot is essentially inductive.

It is also noted that the first eigenvalue for the TE case is
different from zero when k; is zero. It is therefore possible to
find a mode having a zero value of k; and, as such, propagating
just in the z direction. This is the TEM mode of the structure.

IV. CONCLUSIONS

By means of simple considerations of functional analysis,
we directly derive a generalization of the resonance equation.
This equation allows computation of the continuous spectrum
of open waveguides of nonseparable cross section. In the case
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Fig. 5. Behavior of the first three cigenvalues of a slotted screen for the
TE case (the slot width is slot = 2d). The continuous curves refer to the
rigorous results obtained by considering six Chebyshev basis functions, while
the approximate results (dashed lines) are taken from [22].

of three-dimensional objects it corresponds to the already-
known characteristic modes.

The generalized résonance equation has been obtained from
the simultaneous diagonalization of the reactance and of
the radiation conductance by means of a set of common
fields. These fields minimize the Lagrangian (admittance) of
the system and the ratio between the reactive and radiative
energies:

Once the complete modal spectrum is known, modal anal-
ysis of open waveguide discontinuities becomes feasible.

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 41, NO. 8, AUGUST 1993

0
-0.2 exact
O approx.
= 0.4
5 ]
g -0.67 first eigenvalue (TM)
-0.8
-1 R B L SR SR
0 5 10 15 20
Ktslot
(@
07
-0.2 ——exact
S U approx.
= 0.4
5 1
£ ~-0.67 second eigenvalue (TM)
-0.8
D e~ S ——
0 5 10 15 20
Ktslot
(b)
0]
-0.2 - exact
B approx.
= -0.4 4
Z 0.6 i third eigenvalue (TM)
« ]
-0.8
'1<""I'""‘I""i“"\

o

5 10 15 20
Ktslot

©

Fig. 6. Behavior of the first three ecigenvalues of a slotted screen for the
TM case (the slot width is slot = 2d). The continuous curves refer to the
rigorous results obtained by considering six Chebyshev basis functions, while

the approximate results (dashed lines) are taken from [23].
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